2019 GHG Emissions

MIT continues to track toward its minimum 32% reduction goal by 2030 

Recap for 2019

In 2019, MIT continued to advance toward its goal of a minimum 32% reduction in greenhouse gas (GHG) emissions by 2030. Overall net emissions are 18% below our 2014 baseline as on-campus greenhouse gas emissions increased slightly from 2018 levels. This 2% increase in 2019 was in part driven by growth in campus size—including the first fully operational year for MIT.nano—local weather, and the use of specialty research gases. Investments in energy efficiency projects offset a portion of the growth in energy demand.

Innovating for GHG Mitigation 

MIT is home to numerous lab facilities where energy consumption is typically high due to the conditioning of outside air for ventilation purposes, coupled with high air change rates. MIT is currently exploring the development of an innovative laboratory ventilation procedure program to minimize energy consumption while also ensuring the safety and integrity of lab experimentation. The use of specialty gases in research across campus contributes a small yet potent  source of greenhouse gas emissions at MIT. As MIT.nano is expected to use substantial amounts of these gases, the research facility is testing a new system to neutralize these emissions through abatement solutions at point of use — reducing emissions and providing a model for altering the emissions potential of similar research and manufacturing facilities around the world.

Summit Farms Solar Facility 

MIT continued to benefit from the Institute’s 25-year commitment to purchase electricity generated through its Summit Farm Power Purchase Agreement (PPA). The agreement has enabled the construction of a roughly
650-acre, 60-megawatt solar farm on fallow farmland in North Carolina. Through the purchase of 87,300 megawatt hours of solar power, MIT was able to offset over 30,000 metric tons of greenhouse gas emissions (MTCO2e) from our
on-campus operations in 2019. The Summit Farms PPA model has been credited with inspiring a number of similar projects around the country putting additional renewable energy onto the power grid.

Energy Efficiency

As MIT explores strategies for achieving climate neutrality in the future, a core component continues to be scaling up campus energy efficiency. Anchored by significant planned efficiency gains from MIT’s new central utility plant, the Institute is implementing new complementary approaches to increase energy efficiency gains in buildings ranging from testing artificial intelligence to optimize building control systems, to wholesale mechanical system changes in labs to reduce air change requirements creating a more efficient and comfortable work environment.

Download the 2019 GHG Summary Report