Decarbonization

bamboo grows beside MIT nano building
Decarbonizing the MIT Campus

With the release of Fast Forward: MIT’s Climate Action Plan for the Decade, the Institute set a goal to eliminate direct campus emissions by 2050—along with several other campus commitments. Elimination of MIT’s direct emissions by 2050 means that no greenhouse gases will be released by use of MIT campus buildings and owned vehicles.

Reaching this goal requires decarbonization of the regional electric grid and other technological advances in addition to MIT’s current mitigation efforts which focus on building energy efficiency, the electrification of buildings and fleet, and on-campus renewable energy installations. The evaluation of new technologies and strategies for the next generation of MIT’s district energy system is also essential to reach this goal. As measures are adopted to reduce energy and associated emissions, their results will be made available to members of the MIT community in real-time through the MIT Sustainability DataPool and this page.

Here you can explore current emissions inventory, news on net-zero and decarbonization progress, and frequently asked questions. If you have ideas you would like to share to help MIT reach its decarbonization goals, you email zeroby2050@mit.edu  

View October 2023 presentation, "Decarbonizing the Campus District Energy System"

MIT's Greenhouse Gas Inventory

Each year, MIT measures the greenhouse gas emissions associated with the operation of our campus to better understand our direct contribution to the heat-trapping gases in the atmosphere – the gases contributing to global climate change. This basis has long informed our carbon reduction strategies and allows for tracking progress over time. 
 

MIT Greenhouse Gas Emissions

emissions

Summary – Fiscal Year 2022 

Progress toward decarbonizing a dynamic campus like MIT highlights the often-non-linear path of reducing emissions. As the campus grows and needs evolve, emissions fluctuations are both expected and managed for, but the ultimate goal of a zero emissions MIT—and the work toward it—remains unchanged.  In fiscal year 2022, there was a 5% increase in total on-campus emissions over the previous year. In this same time, MIT’s solar power purchase agreement (PPA) in North Carolina enabled the Institute to offset 11% of its total on-campus emissions.  

The overall increase in energy demand on campus—and resulting increase in emissions—was driven in part by a repopulation of campus, new campus growth (related to the New Vassar, the MIT Museum, expansion of Building 4, and reopened Hayden Library), pandemic related safety measures, such as higher building ventilation rates, and testing energy required for the new central plant commissioning. In addition, less solar energy was produced through our North Carolina solar PPA in fiscal year 2022, contributing to an increase in MIT’s total net emissions. MIT continues to focus on reducing direct energy use and the resulting emissions as the campus transforms and grows to meet the mission of the Institute.  

Despite a 7.5% increase in MIT’s campus building space since 2014 (equivalent to growth of 1 million gross square feet) the Institute reduced campus emissions over the same period by 5% via building energy retrofits and other efficiency measures, fuel switching from oil to natural gas and grid improvements. Including the impacts from solar energy purchases, MIT has reduced its net emissions by 15% since 2014.
 

Frequently Asked Questions

What are MIT’s greenhouse gas reduction commitments? 
With Fast Forward: MIT’s Climate Action Plan for the Decade (announced in May 2021) MIT set a goal of eliminating direct emissions from its campus by 2050. An important near-term milestone will be achieving net-zero emissions by 2026. 

What is a net zero commitment versus a zero emissions commitment? 
Net-zero emissions on a global-scale means cutting greenhouse gas emissions worldwide to as close to zero as possible, and then removing an equal amount of remaining emissions from the atmosphere.  For an institution to achieve net-zero emissions, by way of a net zero commitment, this entails taking action to reduce its own emissions from sources under its direct control and then taking actions that reduce emissions elsewhere at an amount equivalent to what it could not reduce itself. When this balance of emissions is achieved, an institution has reached net-zero emissions and is considered not contributing to the buildup of greenhouse gases in the Earth’s atmosphere.  

Zero emissions means that no direct greenhouse gases are released through the operation of an organization's owned buildings and fleet and a zero emissions commitment pledges to achieve this by a certain future date.  

What is a power purchase agreement?  
As renewable energy project developers look to secure financing for the construction of a wind or solar farm, they often seek to obtain a loan. Lenders will typically look at the revenue stream expected from the project and lend against that forecasted revenue. Power purchase agreements (PPA) provide developers with an extremely predictable and secure revenue stream that banks are comfortable lending against. Therefore, PPAs have a direct impact on whether a project will get financed and built. If demand for PPAs increases, this signals to developers that there is demand for renewable energy projects and will stimulate project development. 

What is a carbon offset? 
Carbon offsets are tradable “rights” or certificates linked to activities that lower the amount of carbon dioxide (CO2) in the atmosphere. By buying these certificates—which can be purchased for any geographic location across the globe—a person or group can fund projects that fight climate change.  In some instances, this may be done in place of taking actions to lower one’s own carbon emissions or in addition to. In this way, the certificates “offset” the buyer’s CO2 emissions with an equal amount of CO2 reductions somewhere else. 

Does the MIT Central Utilities Plant produce electricity cleaner than ISO New England?  
In 2021, MIT completed a major upgrade of the district energy system whereby most buildings on campus now benefit from the most advanced cogeneration technology for combined heating, cooling, and power delivery. Through the focused system efficiencies, this system generates electrical power that produces 15 to 25 percent less carbon than the current New England grid. 

What technologies and strategies are being considered by MIT for decarbonizing the campus? 
MIT’s ability to adapt its district energy system (generation, distribution and building systems) and use new technologies is crucial as the Institute works in collaboration with faculty, students, industry experts, peer institutions, and the cities of Cambridge and Boston, for evolving into a next-generation district energy system. 

Strategies which are being considered include electric steam boilers, commercial and industrial-scale heat pumps, thermal batteries, geothermal exchange, river water, micro-reactors, bio-based fuels, and green hydrogen produced from renewable energy, all while reducing consumption and demand at our building assets.  

Additionally, MIT will continue to partner with our local electric utility and balance electrical export/import as the grid decarbonizes.  

MIT will incorporate the most beneficial technologies into a blueprint that will help reach the 2050 goal. 

How does MIT engage with outside companies in pursuit of the above? 
MIT has had strong and long-term partnerships with energy and decarbonation services industry experts. Through our competitive bid process and proper vetting, MIT will work with outside subject matter experts to frame and develop decarbonization pathways, policy, and city and utility engagement. 

In addition to engaging with outside services firms, MIT has met with peers and corporations in an effort to evaluate pros and cons of various solutions and technologies.  

What is Scope 3 and how does MIT account for it? 
Scope 3 emissions are those resulting from activities or assets not owned or controlled by the reporting institution, but which support the activities of a reporting organization. Examples of Scope 3 emissions may be sponsored travel, commuting, or capital goods. 

Since 2018, work has been done to build preliminary estimates and develop methods for comprehensive data analysis of Scope 3 greenhouse gas emissions activities. The Institute’s Scope 3 activities — as framed by the Scope 3 protocol developed by the World Resources Institute and the World Business Council for Sustainable Development — include goods purchased by MIT, MIT-sponsored travel, employee commuting, campus-generated waste, and MIT capital goods such as building construction materials and large equipment.  The protocol provides a standard algorithm by which to collect and calculate this data. 

What role will electric vehicle infrastructure play in MIT’s plan for decarbonization?  
MIT is committed to eliminating campus emissions from Scopes 1 and 2—including buildings and fleet—no later than 2050. In light of this commitment, MIT is working to replace its current fleet of vehicles with alternative electric vehicle (EV) models when available on the market. MIT’s campus fleet has approximately 144 vehicles with the potential to be replaced with EV vehicles as the market evolves.   

The student-led Electric Vehicles Research Team worked alongside MIT staff and researchers to study the costs for replacing existing vehicles with EVs on the market now, versus buying new gas vehicles or leaving the existing ones in place. The research team produced a set of specific recommendations about fleet vehicle replacement and charging infrastructure installation on campus that supports both commuters and an MIT EV fleet in the future. Research found that there is not a drastic difference in the cost of new EVs versus new gas-powered vehicles.   

Glossary of MIT terms

Carbon offsets - Tradable “rights” or certificates linked to activities that lower the amount of carbon dioxide (CO2) in the atmosphere. By buying these certificates, a person or group can fund projects that fight climate change, instead of taking actions to lower their own carbon emissions. In this way, the certificates “offset” the buyer’s CO2 emissions with an equal amount of CO2 reductions somewhere else via Climate Portal 

Net zero emissions - The counterbalance of greenhouse gas emissions released by a source and the amount of greenhouse gases removed from the atmosphere. Net zero carbon dioxide (CO2) emissions are achieved when anthropogenic (human driven) CO2 emissions are balanced globally by anthropogenic CO2 removals over a specified period. The removal of these greenhouse gases from the atmosphere can be achieved through reforestation, building renewable energy, carbon-storing agricultural practices, and waste and landfill management.  

Power Purchase Agreement - As renewable energy project developers look to secure financing for the construction of a wind or solar farm, they often seek to obtain a loan. Lenders will typically look at the revenue stream expected from the project and lend against that forecasted revenue. PPAs provide developers with an extremely predictable and secure revenue stream that banks are comfortable lending against. Therefore, PPAs have a direct impact on whether a project will get financed and built. If demand for PPAs increases, this signals to developers that there is demand for renewable energy projects and will stimulate project development.

Scopes 3 emissions - Emissions resulting from activities or assets not owned or controlled by the reporting institution but which support the activities of a reporting organization. Examples of Scope 3 emissions may be sponsored travel, commuting, or capital goods.  

Zero emissions - No greenhouse gas emissions are released into the atmosphere as the result of an institution's activities. This refers to those emissions created directly from an institution's buildings and vehicles.

Submit your ideas

Do you have ideas to help MIT reach its decarbonization goals? Email us at zeroby2050@mit.edu

Decarbonization 2050 Working Group

A new working group of the MIT Climate Nucleus to advance MIT's campus decarbonization plans, as outlined in the Fast Forward Climate Action Plan. The group is comprised of MIT faculty members with expertise in different low- and zero-carbon technology areas and related topics. The group will work together to inform MIT's plan to decarbonize the campus' main energy systems. 

 

Working Group Members

Zachary Berzolla | Graduate Student, Department of Architecture, Building Technology

Meghan Blumstein | Postdoctoral Fellow, Department of Civil and Environmental Engineering

Jacopo Buongiorno | TEPCO Profoessor of Nuclear Science and Engineering, Department of Nuclear Science and Engineering

Yet-Ming Chiang | Professor, Department of Materials Science and Engineering

Ippolyti Dellatolas | Graduate Student, Department of Mechanical Engineering

Priya Donti | Assistant Professor, Department of Electrical Engineering and Computer Science

Betar Gallant | Associate Professor, Department of Mechanical Engineering

Joe Higgins | Vice President for Campus Services and Stewardship

David Mazumder | Graduate Student, Harvard/MIT MD-PhD Program, Health Sciences and Technology

Julie Newman | Director, Office of Sustainability; Lecturer, Department of Urban Studies and Planning (Co-Chair)

Bradley Olsen | Professor, Department of Chemical Engineering

Joe Paradiso | Professor, Program in Media Arts and Science

Christoph Reinhart | Professor, Department of Architecture (Co-chair)

Andy Sun | Associate Professor, Sloan School of Management

Jessika Trancik | Professor, Institute for Data, Systems, and Society

Siqi Zheng | Samuel Tak Lee Professor of Urban and Real Estate Sustainability, Department of Urban Studies and Planning